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Abstract

A Monte Carlo formulation of the multistage preequilibrium model (MPM)

for particle emission from a compound nucleus is described. Although the long-

term goal of the e�ort is to provide an additional physics model for the Monte

Carlo code HETC, connecting the intranuclear cascade model and the evapora-

tion model, the present work is implemented as a stand-alone Monte Carlo code,

PREEQ1, which illustrates the method and tests the algorithms.

Introduction

The Monte Carlo transport code HETC [1], widely used for computations in medium
energy particle physics, employs an intranuclear cascade model to describe the reaction
process. The cascade model, which treats the reaction as a series of multiple quasi-
free scattering events from two-body interactions, is largely e�ective above 100 MeV.
At lower incident particle energies, the purely two-body picture shows considerable
limitation.

The long-term objective of this work is to adapt the exciton preequilibrium model
[2],[3] to a Monte Carlo format which may be used in HETC to replace the intranuclear
cascade at low energies and, at higher energies, to supplement the intranuclear cascade
as a subsequent preequilibrium emission model before application of the evaporation
model. In the present paper, we outline the development of such a Monte Carlo model
and describe its implementation in a stand-alone testing code, PREEQ1. Two issues in
particular are not addressed in this paper: the �nal choice of a model for calculating
inverse reaction cross sections and the method for interfacing the model with the existing
intranuclear cascade model.
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The form of the exciton model which we consider is frequently termed \the mul-
tistage preequilibrium model" (MPM) in that it may predict the emission of one or
more particles before assuming that the nuclear system has approached equilibrium
and thus is better described by a statistical model (the evaporation model in HETC).
In our development, we have obtained guidance from three code implementations of the
MPM: GNASH [4], PRECO [5], and GRYPHON [6]. Models and methods used in these
\analytical" codes have been supplemented by techniques peculiar to the Monte Carlo
method or dictated by considerations of computing e�ciency when using the Monte
Carlo method.

Notation

The appropriate variables for characterizing a nuclear state in the multistage preequi-
librium model (MPM) are the mass and charge numbers A and Z, the particle and
hole numbers P and H, and excitation energy E. The exciton number N is given by
N = P +H. It is then convenient to de�ne a exciton state variable C by

C � (A;Z; P;H)

so that we can de�ne our nuclear state by the pair (C;E).
Within the MPM, we have two classes of possible transitions. The �rst involves the

emission of a particle of type b from the state (C;E):

(C;E)
b�! (C � b;E � Sb � �b) = (C 0; E0)

where Sb is the separation energy for particle b, �b is the kinetic energy emitted in the
center of mass for the transition, and

C � b � (A� ab; Z � zb; P � ab;H)

where ab and zb are the mass and charge numbers of particle b. It is also convenient to
de�ne C + b � (A+ ab; Z + zb; P + ab;H) to label a possible precursor of C.

The second type of transition allowed corresponds to �N = +2 without a change
in any other state variable. It is convenient to use the following notation for such cases:

(C;E)
�N=2�! (C + 2; E)

(C � 2; E)
�N=2�! (C;E)

where
C � 2j � (A;Z; P � j;H � j) :
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A further notational simpli�cation will be used with respect to energy integrals. Let
f(�b) be an arbitrary function of the emission energy �b. Then we de�ne

Z
f(�b)d�b �

Z E�S
b

�
cb

f(�b)d�b

to be the integral over the entire range �cb � �b � E � Sb allowed by conservation of
energy for excitation E and constrained by a possible Coulomb barrier �cb. Similarly, an
integral over excitation energy without speci�ed limits of integration is assumed to be
an integral over all excitations energies where the integrand satis�es all such appropriate
constraints.

The Master Equation

Let us make the following de�nitions:

� q�(C;E; t) is the population density per unit excitation energy of state C at exci-
tation energy E at time t in the � stage of the multistage process , given that the
nuclear system begins at t = 0 in stage � = 1 with state C0 and excitation E0;

� �+(C;E) and ��(C;E) are the internal transition rates for �N = +2 and �N =
�2 transitions respectively;

� W (C;E) is the total emission rate of all outgoing particles at all energies (leading
to the population of stage � + 1);

� S�(C;E; t) is the rate that the state (C;E) is being populated per unit excitation
energy by transitions from the � � 1 stage.

Then the time dependent master equation for the � stage may be written as

dq�(C;E; t)=dt = �+(C � 2; E)q�(C � 2; E; t) + ��(C + 2; E)q�(C + 2; E; t)

�[�+(C;E) + ��(C;E) +W (C;E)]q�(C;E; t) + S�(C;E; t) : (1)

The initial condition may then be de�ned by

q�(C;E; t = 0) = ��;1�C;C0
�(E � E0) : (2)

Let us make the further de�nitions:

� since we are considering a pure preequilibrium model, we consider the probability
of �N = �2 transitions to be negligible, and so ��(C;E) � 0 and will be ignored
(see discussion below);
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� wb(�; C;E) is the emission rate spectrum for the emission of particles of type b
with emission energy � from the state (C;E) and vanishing outside of the interval
�cb � � � E � Sb ;

� Wb(C;E) =
R
wb(�; C;E)d� is the emission rate for particles of type b;

� W (C;E) =
P

bWb(C;E) is the total emission rate over all outgoing particles and
energies;

� � (C;E) = [�+(C;E) + ��(C;E) +W (C;E)]�1 � [�+(C;E) +W (C;E)]�1 is the
transition time for state (C;E).

The source term into the state (C;E) in stage � is then

S�(C;E; t) =
X
b

Z
wb(�; C + b;E + Sb + �)q��1(C + b;E + Sb + �; t)d�

=
X
b

Z
wb(E

0 � Sb � E;C + b;E0)q��1(C + b;E0; t)dE0

With the above de�nitions, we may may write equation 1 as

dq�(C;E; t)=dt = �q�(C;E; t)=� (C;E) + �+(C � 2; E)q�(C � 2; E; t)

+
X
b

Z
wb(E

0 � Sb �E;C + b;E0)q��1(C + b;E0; t)dE0 (3)

The solution of (3) as a function of time is a sum of decaying exponentials. We can
therefore de�ne the time-independent function Q�(C;E) by the relation

� (C;E)Q�(C;E) =
Z
1

0
q�(C;E; t)dt :

Furthermore,

Z
1

0

dq�(C;E; t)

dt
dt = �q�(C;E; t = 0) = ���;1�C;C0

�(E � E0)

using equation 2. We may then integrate (3) over time to obtain the following set of
three equations. First we have an initial condition

Q1(C0; E) = �(E � E0) (4)

where we have used the condition q1(C0 � 2; E; t) � 0. Next we have the �rst stage
(� = 1) equation for C 6= C0:

Q1(C;E) = �+(C � 2; E)� (C � 2; E)Q1(C � 2; E) : (5)
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Finally, for the subsequent stages (� > 1),

Q�(C;E) = �+(C � 2; E)� (C � 2; E)Q�(C � 2; E)

+
X
b

Z
wb(E

0 � Sb �E;C + b;E0)� (C + b;E0)Q��1(C + b;E0)dE0 (6)

where the source term includes contributions from all the populated states of the � � 1
stage which may reach the state (C;E) by the emission of some particle b. By inspection
of equations 4, 5, and 6, we may interpret the function Q�(C;E) as follows:

� Q�(C;E) is the total population per unit excitation energy which has entered the
state C in the � stage from any source.

The form of the source term in (6) also indicates how the di�erential cross section for
the emission of particle type b is to be determined from Q�(C;E) :

d�b

d�
= �R

X
�

X
C

Z
wb(�; C;E)� (C;E)Q�(C;E)dE (7)

which includes the contributions from all stages (which we choose to consider) and all
states (C;E) which become populated in each stage. The problem of obtaining the
particle emission spectrum is thus reduced to obtaining a numerical solution for the
function Q�(C;E) from the recursion relations of equations 4, 5, and 6. The process
will be terminated after some state Cmax is reached within each stage and will be
terminated after some �max stages; all further emission is assumed to be obtainable
from a statistical model for nuclear deexcitation.

The Monte Carlo Algorithm

It is apparent that equations 4, 5, and 6 can be interpreted as de�ning a random walk
problem whereby we de�ne the system to be in the initial state (C0; E0) and allow the
state to evolve with the appropriate probabilities. Two possibilities suggest themselves
as providing the initial condition:

� a projectile type, projectile energy, target nucleus, and assumed reaction cross
section �R are de�ned and the initial condition is taken to be the (P = 2;H = 1)
in the compound nucleus so de�ned (the lowest order emitting state);

� the initial condition is de�ned from the residual nuclear state obtained from a
single execution of a Monte Carlo intranuclear cascade calculation.
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It is the latter case which we will employ by including a MPM calculation in HETC.
Since we are now treating the evolution of the nuclear system in a probabilistic

manner, we rede�ne some of the quantities above in terms of discrete probabilities and
probability densities:

� P+(C;E) = �+(C;E)� (C;E) is the probability of a �N = +2 transition
(C;E) �! (C + 2; E);

� Pb(C;E) = Wb(C;E)� (C;E) is the probability of emitting a particle b from state
(C;E) at any emission energy;

� pb(�; C;E) = wb(�; C;E)=Wb(C;E) is the probability density function for the emis-
sion energy �, given that b is emitted from (C;E).

The analog random walk algorithm then takes the following form.

1. The initial condition of the system (C = C0; E = E0) is de�ned, as is the trans-
formation from the center of mass (COM) system back to the laboratory system;
the system is de�ned as being in stage � = 1.

2. A test is made to see if the system has already emitted from the maximum allowed
stage or has evolved beyond the maximum exciton number allowed in the present
stage; if so, the computation has concluded.

3. The transition probabilities Pb and P+ = 1 �P
b Pb are calculated; if the state

reached is particle-stable, the computation has concluded.

4. A uniform random sampling is made to choose the transition type.

5. If the nonemitting �N = +2 transition is selected, the state of the system is
rede�ned by C �! C 0 = C+2 with E unchanged; the calculation returns to step
2 above.

6. If emission of particle b is selected, the emission energy � is obtained by sampling
from the probability density function pb(�; C;E).

7. The emission energy � is partitioned between the emitted particle and the recoiling
nucleus, and the emission angle in the COM is randomly selected from an isotropic
distribution or from the parameterization of Kalbach described below.

8. The kinematic variables of the emitted particle are computed in the laboratory
frame and so recorded; the kinematic variables of the recoiling nucleus are recal-
culated and a new COM-to-lab transformation determined.
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9. The state of the nuclear system is rede�ned by (C;E) �! (C 0; E0) =
(C � b;E � Sb � �); the calculation returns to step 2 above.

At the conclusion of the process, the �nal nuclear state (A;Z;E), together with the
kinematic parameters for nuclear recoil, is recorded as an initial condition for a sub-
sequent statistical deexcitation calculation such as the evaporation model employed in
HETC.

The Particle Emission Rate

We take the emission rate spectrum for the emission of particle b from (C;E) to be [6]

wb(�; C;E) =
(2sb + 1)

�2�h3
�b��b(�)

!(C � b;E0)

!(C;E)
Qb : (8)

In equation 8,

� sb and �b are the intrinsic spin and reduced mass of the ejectile;

� �b is the inverse reaction cross section;

� � is the channel energy in the decay channel;

� E0 = E � Sb � � is the excitation energy of the residual nucleus;

� !(C;E) is the level density of the emitting nucleus;

� !(C � b;E 0) is the level density of the residual nucleus.

Qb is a factor which reects the correlation of the emission process with the incident
projectile and the e�ect of proton-neutron distinguishability [3].

For the inverse cross section �b(�), we tentatively employ the geometric cross section
of reference [5] with a Coulomb barrier penetration factor Tb(�):

�b(�) = �(RA1=3
r +Rb+ 6�(�))2Tb(�) (9)

where

� Ar is the mass number of the potential residual nucleus;

� R = 1.23 fm;

� Rb = 0 for b = n; p;

� Rb = 0:8 fm for b = d; t; � ;
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� Rb = 1:2 fm for b = �;

� 6�(�) is the (nonrelativistic) reduced channel wavelength;

� Tn(�) = 1 for neutrons.

The Coulomb barrier penetration factor is given by

Tb(�) = (1 � kbVb=�) (10)

with the Coulomb energy Vb given by

Vb =
zb(Z � zb)e2

RcA
1=3
r +Rb

for Rc = 1:70 fm:

The factors kb < 1 reect barrier penetration and are obtained from a parameterization
of the s-wave Coulomb barrier transmission factor at the condition � = Vb.

When equation 10 is used, we obtain a cuto� energy for the charged particle inte-
grations given by �cb = kbVb. Let us de�ne for charged particles

�b = ��cb
~�b = �(RA1=3

r +Rb+ 6�(�)cb)2

�b(�) =

" RA1=3
r +Rb+ 6�(�)

RA1=3
r +Rb+ 6�(�cb)

#2
:

For purposes of computation, we approximate

�b(�)Tb(�) � ~�b(1 + �b=�) (11)

to perform the computation of the emission probability, and then apply �b as a Monte
Carlo rejection factor to correct for our approximation. For the neutron channel, we
may also apply the approximation (11); however, for neutrons, we de�ne

�cn = 0

r0 = RA1=3
r

�n =
�h2c2

2�nr20
~�n = 2�r20

�n(�) =
1

2

(r0+ 6�(�))2
r20(1 + �n=�)

where r20�n=� =6�2(�).
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Figure 1: Level density parameter model. Solid line { high excitation limit,

points { low excitation limit for nuclei near the line of stability.

The level density formulation employed is that of Williams [7]:

!(C;E) =
gN [E �A(P;H)]N�1

P !H!(N � 1)!
(12)

where g is the single-particle level density parameter, related to the parameter a of the
Fermi gas level density !FG / exp(2

p
aU) by a = �2g=6. To obtain g, we use the

energy dependent formulation of Ignatyuk [8] as implemented in GNASH [4], with the
provision that

lim
E!0

g(E) = g0

where g0 is the level density parameter obtained from Gilbert and Cameron [9]. The
limiting values for g(E) are shown in �gure 1.

We de�ne the Pauli correction term [3] by

EPauli(P;H) = [max(P;H)]2=g0 ;

A(P;H) = EPauli(P;H) � [P (P + 1) +H(H + 1)]=4g0 :

To evaluate the emission probability, g(E 0 = E � Sb � �) appears in the integral of (8)
over the emission energy; to avoid adding this complexity to the integration, we use the
following scheme:
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� de�ne g0 = max[g(E0max); g0];

� approximate g � g0 in (12) to perform the integral;

� use 	 = (g(E0)=g0)N
0

as a rejection factor

when a residual is chosen with excitation E0 and exciton number N 0.
The factor Qb is de�ned ([3],[5]) by

Qb =
Rb(P )

R1b

where Rb(P ) is the statistical average of the quantity

 
P

pb

!
�1  

P�
�b

! 
P�
�b

!
(13)

over those particle-hole states which actually occur, and

R1b = lim
P!1

Rb(P )

In the above, P� and P� with P = P� + P� are the number of proton and neutron
particles in the emitting state; H� and H� with H = H� +H� are de�ned similarly for
holes. For the emitted particle b, �b and �b are the number of protons and neutrons
respectively, with pb = �b + �b. If we let pa = �a + �a refer to the incident particle, the
allowed states may be characterized (for the initial stage) by the following scheme.

� P = pa +H; H = 1; 2; :::, where a is the incident projectile;

� H� = i; i = 0; 1; :::;H ;

� H� = H � h� = P � pa � i ;

� P� = h� + �a = �a + i ;

� P� = h� + �a = P � �a � i .

The above reects the fact that proton or neutron particle-hole pairs are created at
each internal transition.

In [5], two di�erent models are proposed for the weighting function over which the
statistical average of (13) is to be taken:

Wi =

 
H

i

!�
Z

A

�i �A� Z

A

�H�i
(14)
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where Z and A are taken for the target nucleus, or

Wi =

 
H + pa
i+ �a

! 
H

i

!�
Z

A

�2i+�a �A� Z

A

�2H�2i��a
(15)

where Z and A are taken in the compound system. In either case, we evaluate Qb from

Rb(P ) =

PH
i=0Wi

 
P�
�b

! 
P�
�b

!
 
P

pb

!PH
i=0Wi

(16)

and

R1b =

 
pb
�b

!�
Z

A

��
b
�
A� Z

A

��
b

: (17)

[The limiting form R1b may be obtained from the fact that the binomial distribution
approaches a normal distribution for a large number of degrees of freedom and by using
the limiting forms of the binomial coe�cient.] At the present time, we consider the
choice of a weighting function (14) or (15) to be an open question. Furthermore, for
second-stage and subsequent emission, we will make the approximation that Qb � 1.

The emission rate Wb(C;E) is obtained by integrating (8) with the insertion of (11)
and (12):

Wb(C;E) = Fb(C;E)
Z �max

�
cb

(�+ �b)[�max � �]N
0
�1d�

= Fb(C;E)Ib(C;E) (18)

where
N 0 = N � pb

�max = E � Sb �A(P � pb;H)

and

Fb(C;E) =
(2sb + 1)�b�b ~�gg0

N 0Qb

�2�h3!(C;E)(P � pb)!H!(N 0 � 1)!
:

The integral in (18) is just

Ib(C;E) = (�max � �cb)
N 0

"
�max + �b

N 0
� �max � �cb

N 0 + 1

#

=
(�max � �cb)

N 0+1

N 0(N 0 + 1)
for charged particles

=
�N

0+1
max

N 0(N 0 + 1)

"
1 +

(N 0 + 1)�

�max

#
for neutrons :
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The Internal Transition Rate

In evaluating the forward internal transition rate �+(C;E), we follow the practice of
GNASH [4]:

�+(C;E) =
2�

�h
jM2 j g

3[E � Epauli(P + 1;H + 1)]2

2(N + 1)
(19)

where the level density parameters (at excitation energy E and at zero excitation) are
evaluated in the emitting nucleus. The matrix element is parameterized (see references
[4] and [5]) by

jM2 j =
kN

A3E

"
E=N

7MeV

E=N

2MeV

#1=2
for E=N < 2 MeV;

=
kN

A3E

"
E=N

7MeV

#1=2
for 2 MeV � E=N < 7 MeV;

=
kN

A3E
for 7 MeV � E=N < 15 MeV;

=
kN

A3E

"
15MeV

E=N

#1=2
for 15 MeV � E=N:

The constant k is taken to be 135 MeV3 [5]. Using the same matrix element, the
backward internal transition rate ��(C;E) is given by

��(C;E) =
2�

�h
jM2 j gPH(N � 2)

2

�
"
1� (N � 1)

(N � 2)

(P � 1)(P � 2) + (H � 1)(H � 2)

8g[E � Epauli(P;H)]

#
(20)

By comparing equations 19 and 20, and using the estimate for the equilibrium
exciton number Mmax given by equation 23 below, we may note that

�+

��
�

�
N

Nmax

�4

Thus we are justi�ed in taking
�+

��
<< 1

for the low exciton number states from which the bulk of the emission arises.
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Selecting the Transition and the Emission Energy

From equations 18 and 19, we may calculate the transition time

� (C;E) = [�+(C;E) +
X
b

Wb(C;E)]
�1

and consequently the forward internal transition probability

P+ = �+� (21)

and the particle emission probabilities

Pb = Wb� : (22)

The probabilities of (21) and (22) then de�ne a discrete distribution which is sampled
to select the transition type.

If the internal transition is chosen, the state of the system is rede�ned and a new
step is initiated as discussed above. If the new exciton number for the system exceeds
the maximum Nmax, the preequilibrium calculation is terminated. Following [6], we
de�ne

Nmax =
�
8

5
gE

�1=2
(23)

which allows internal transitions (and possible particle emission) to proceed until the
exciton number approaches the equilibrium value, at which point emission is more
e�ciently treated by the evaporation model.

If a particle transition b is selected, then the emission energy � must be sampled
from the distribution

pb(�; C;E) =
(�+ �b)[�max � �]N

0
�1

Ib(C;E)
over the range �cb � � � �max. For charged particles, �b = ��cb so that the transforma-
tion

� = �max � (�max � �cb)x (24)

allows us to sample x from the beta distribution

pb(x) = B(N 0;2)(x) = N 0(N 0 + 1)xN
0
�1(1� x) :

For neutrons, �cb = 0, so that the above transformation (24) leads to

pn(x) = pB(N 0;1)(x) + (1� p)B(N 0;2)(x)

with

p =
�n

�n +
�max

N 0+1
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and
B(N 0;1)(x) = N 0xN

0
�1 :

Consequently, with probability p, x is sampled from the distribution B(N 0;1)(x), and,
with probability 1�p,x is sampled from the distribution B(N 0;2)(x). Once x is obtained,
the emission energy � is obtained from (24).

Having found the emitted particle type and the emission energy, the rejection factors
�b(�) and 	 de�ned above must be applied. Choosing a random number r uniformly
0 < r < 1, the selection is rejected whenever

r > �b(�)	

and the entire sampling is repeated.

Selecting the Emission Angles

The emission of the second and subsequent particles from the compound nucleus is
treated as isotropic in the COM; the assumption is made that memory of the incident
particle direction is lost after the emission of one particle. However, this is not the case
for �rst stage emission. A parameterization of the angular distribution for �rst stage
emission, based on an analysis of experimental data, has been provided by Kalbach [10].

As described in reference [10], the probability distribution for � = cos � is given by

p(�) =
a

2 sinh a
[cosh a�+ Fmsd sinh a�] (25)

where � is the emission angle with respect to the direction of the incident particle. The
quantity a is determined by the Kalbach parameterization [10]. The parameter Fmsd

is de�ned [5] as that fraction of the strength of the emitting state which arises only

from unbound states in the present and all previous exciton con�gurations. With the
more complex preequilibrium model of reference [5], Fmsd may be calculated; in our
model, it must be supplied. In GNASH [4], Fmsd � 1. In HETC, the completion of
an intranuclear cascade is equivalent to saying that the system has reached a \bound"
con�guration; a subsequent MPM phase would then have Fmsd � 0.

For use in our test code PREEQ1, we assume that Fmsd decreases geometrically
from Fmsd = 1 in the initial con�guration with exciton number N0 to Fmsd = f = 0:1
at the equilibrium exciton number Nmax of equation 23:

Fmsd = fx (26)

where

x =
N �N0

Nmax �N0

:

We note that the above assumption is purely arbitrary and is a candidate for further
e�ort in model development.
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Calculations with PREEQ1

The code PREEQ1 performs the Monte Carlo multistage preequilibrium calculation
according to the model described above. Executing interactively, the user must input
the projectile type (n, p, d, t, � , or �), the target nucleus (Z,A), the projectile laboratory
kinetic energy (MeV), and the number of histories (interactions) to be run. In addition,
the user has some choice of options.

� The user may enter a reaction cross section to normalize the output, or allow the
code to calculate a reaction cross section according to equation 9.

� The user may input a �xed number for the maximum emitting exciton state or
use the default expressed by equation 23.

� The user may enter a minimum emission probability below which the history
terminates or use the default (0.001).

� The user has a choice of calculating Qb with equation 14 (the default), with
equation 15, or setting Qb � 1.

� The user may optionally include the backward internal transition in the random
walk process, according to equation 20 (but the running time may approach in-
�nity if the nuclear system is allowed to approach equilibrium).

� The user may vary the parameter f used to calculate Fmsd with equation 26; the
default is f = 0:1. Using f = 0 implies Fmsd = 1 for the �rst exciton state and
Fmsd = 0 for the higher exciton states.

� The user may also use models for the level density parameter other than the
default model described above. The other choices are the model originally used by
the evaporation model in HETC [11] and an alternative more recently developed
for use in HETC [12].

The user also has a choice of short or long printed and plotted output; the long output
includes the calculated angular distributions for emitted neutrons and protons.

The calculated reaction and particle emission cross sections of four sample cases
are illustrated in table 1. The projectile energy in each case was 100 MeV and the
default options were used. Each calculation included 100,000 interactions. For the cases
with the incident proton, the angle-integrated particle emission spectra are displayed in
�gures 2 and 3. The component as well as the total emission for protons and neutrons
in these cases is illustrated in �gures 4 through 7. The �rst step emission shown is the
component coming only from the lowest exciton state (2p,1h) in the �rst stage. The
total �rst stage and second stage emission are also shown.
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Figure 2: Emission spectrum for p+ 27Al at 100 MeV. Solid line { neutrons;

dashed line { protons; dotted line { deuterons.

Figure 3: Emission spectrum for p + 238U at 100 MeV. Lines de�ned as in

�gure 2.
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Figure 4: Neutron spectrum for p + 27Al at 100 MeV. Solid line { total

emission; dotted line { �rst step; long dashed line { total �rst stage; short

dashed line { second stage .

Figure 5: Proton spectrum for p + 27Al at 100 MeV. Lines de�ned as in

�gure 4.
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Figure 6: Neutron spectrum for p + 238U at 100 MeV. Lines de�ned as in

�gure 4.

Figure 7: Proton spectrum for p + 238U at 100 MeV. Lines de�ned as in

�gure 4.
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Figure 8: Emission spectrum for p + 27Al at 100 MeV, with Qb calculated

with equation 15. Lines de�ned as in �gure 2.

Figure 9: Emission spectrum for p + 27Al at 100 MeV, with Qb � 1. Lines

de�ned as in �gure 2.
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Figure 10: Emission spectrum for p + 238U at 100 MeV, calculated with

Nmax = 13 . Lines de�ned as in �gure 3.

Figure 11: Emission spectrum for p + 238U at 100 MeV, calculated with

Nmax = 23. Lines de�ned as in �gure 3.
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Figure 12: Di�erential neutron spectrum for p+27Al at 100 MeV with f = 1

in equation 26. Solid line for � = +0:9, dashed line for � = �0:9:

Figure 13: Di�erential neutron spectrum for p+27Al at 100 MeV with f = 0

in equation 26. Lines de�ned as in �gure 12.
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p+ 27Al n+ 27Al p + 238U n+ 238U

Reaction 527.06 544.34 1757.1 2050.8
Neutron 127.63 275.44 781.5 1346.2
Proton 301.01 170.43 677.9 385.6
Deuteron 15.42 17.28 9.1 8.8
Triton 0.44 0.77 0.3 0.3
Tau 0.84 0.34 0.1 0.1
Alpha 0.43 0.32 0.1 0.2

Table 1: Calculated reaction and preequilibrium emission cross sections (mb)

for sample cases at 100 MeV projectile energy.

By comparing �gures 2, 8, and 9, we may observe the e�ect of the various methods
for computing the factor Qb. The \memory" of the projectile type is most strongly
retained by calculating Qb with equation 14 (�gure 2); it is noticeably less so when
calculated with equation 15 (�gure 8). For contrast, �gure 9 shows the spectrum as
calculated with no \memory" (Qb � 1).

In our sample case for p+ 238U at 100 MeV incident energy (�gure 3), the computed
equilibrium exciton number is 53.6; thus �rst stage emission is allowed through exciton
number Nmax = 53. In �gure 10, we see the e�ect of restricting the calculation to
exciton number Nmax + 13; �gure 11 illustrates the e�ect of truncation at Nmax = 23.
The low energy neutron spectrum is strongly sensitive to the choice of Nmax.

As mentioned above, the choice of the parameter Fmsd for calculating the angular
distribution for emitted particles has been made quite arbitrarily at the present time
(f = 0:1 in equation 26). To illustrate the e�ect of the parameter f , two extreme
cases are shown in �gures 12 and 13 where we see the neutron spectrum for the case
p+ 27Al at 100 MeV incident energy averaged over angular intervals 0:8 � � � 1:0 and
�1:0 � � � �0:8. For �gure 12, f = 1 so Fmsd � 1, which leads to the maximum
emission in the forward direction and the minimum in the backward. For �gure 13, we
have taken f = 0, so that Fmsd = 1 only for the lowest (N = 3) exciton state and
Fmsd = 0 for all other �rst stage emission. For this particular case, the e�ect on the
spectrum in the backward direction is as large as 20%.
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Summary

In the sections above, we have outlined the the necessary components for the devel-
opment of a Monte Carlo multistage preequilibrium model code. From them, we have
developed a stand-alone MPM Monte Carlo code PREEQ1 that largely parallels the
methodology used in GNASH [4] and has allowed us to test the implementation of the
various components. Furthermore, PREEQ1 provides an ideal test vehicle for alterna-
tive algorithms and new theoretical methods. The stand-alone code will provide the
subroutines for the implementation of the preequilibrium model into HETC.

As noted above, the question of the estimation of inverse reaction cross sections is
still open and will be treated in future development. However, the parameterization by
Chatterjee [13] appears to o�er a complete and applicable formulation.

The remaining theoretical questions, which will be addressed in a subsequent paper,
concern the interface between the intranuclear cascade model and the MPM and the
interface between the MPM and the evaporation model. Our experience gained with
the stand-alone code will help us in this e�ort.
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Appendices

Analytical Results

As an addendum to the above discussion, we include some results that may be derived
from the above which are of interest in performing analytical MPM calculations but
which are not needed in a Monte Carlo implementation (although they illustrate features
of the random walk). In the diagram below, we illustrate the possible paths for the
evolution of the nuclear system.

C0 ! C+2
0 ! C+4

0 ! C+6
0 !

# # # #
C0 � b1 ! C+2

0 � b1 ! C+4
0 � b1 ! C+6

0 � b1 !
# # # #

C0 � b1 � b2 ! C+2
0 � b1 � b2 ! C+4

0 � b1 � b2 ! C+6
0 � b1 � b2 !

# # # #

The initial state C0 evolves by transition to the states C0 + 2k (labeled as C+2k
0 in the

diagram) within the �rst stage. Emission of a particle b1 in the �rst stage from state
C0+2k leads to the state C0+2k � b1 (with energy E0 = E0�Sb1 � �b1). Similarly, all
possible states which may occur in the third stage may be labeled by C0 +2k � b1� b2
where b2 is the particle emitted in the second stage; the energy would then be computed
from E0 = E0�Sb1 � �b1 �Sb2 � �b2. [Note that this counting scheme will include states
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which do not emit (P = 0) and some that are nonphysical (P < 0); this will cause no
problem, since in the former case, wb � 0, while in the latter, the function Q� � 0.]

Let us de�ne a depletion factor Djk(C;E) by

Djk(C;E) =
k�1Y
i=j

�+(C + 2i; E)� (C + 2i; E) for k > j

Djj(C;E) � 1 for k = j

where the following relationship holds:

Dij(C;E)Djk(C;E) = Dik(C;E) :

To compact our notation somewhat, let us also de�ne w?
b by

w?
b (�; C;E) = wb(�; C;E)� (C;E) :

From equations 4 and 5, we obtain

Q1(C0 + 2k;E) = D0k(C0; E)�(E � E0)

so that the di�erential cross section for b coming from the �rst stage is just

 
d�b

d�

!
1

= �R

kmaxX
k=0

Z
w?
b (�; C0 + 2k;E)Q1(C0 + 2k;E)dE

= �R

kmaxX
k=0

w?
b (�; C0 + 2k;E0)D0k(C0; E0)

We can reduce equation 6 to

Q�(C� + 2k;E) =
kX
i=0

X
b

Dik(C� ; E)

�
Z
w?
b (E

0 � Sb � E;C� + b+ 2i; E 0)Q��1(C� + b+ 2i; E0)dE0

where the summation is over all the potential precursor states in the � � 1 stage. If we
apply this to the second stage, we get

Q2(C0 � b1 + 2k;E) =
kX
i=0

Dik(C0 � b1; E)w
?
b (E0 � Sb1 � E;C0 + 2i; E0)D0i(C0; E0)
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which leads to the following form for the di�erential cross section for b coming from the
second stage:

 
d�b

d�

!
2

= �R

kmaxX
k=0

kX
i=0

X
b1

Z
dE

� w?
b (�; C0 � b1 + 2k;E)Dik(C0 � b1; E)

� w?
b1
(E0 � Sb1 � E;C0 + 2i; E0)D0i(C0; E0) :

With somewhat more labor, the di�erential cross section in the third stage is

 
d�b

d�

!
3

= �R

kmaxX
k=0

kX
j=0

jX
i=0

X
b2

X
b1

Z Z
dE0 dE

� w?
b (�; C0 � b1 � b2 + 2k;E0)Djk(C0 � b1 � b2; E

0)

� w?
b2
(E � Sb2 � E0; C0 � b1 + 2j; E)Dij(C0 � b1; E)

� w?
b1
(E0 � Sb1 �E;C0 + 2i; E0)D0i(C0; E0) :

Evaluation of Rb(P )

When the weighting function Wi is the binomial distribution, as in equation 14, then
the factors Rb(P ) may be directly evaluated. The identity

X 
H

i

!
�i(1 � �)H�i

 
i

k

! 
H � i

l

!
=

 
k + l

k

! 
H

k + l

!
�k(1 � �)l

is useful in performing the evaluation. Using P = H + pa and � = Z=A, we obtain the
following expressions.

Rn(P ) =
H(1��) + �a

P

Rp(P ) =
H� + �a

P

Rd(P ) =
2 fH(H�1)�(1��) +H[�a�+ �a(1��)] + �a�ag

P (P�1)
Rt(P ) =

3

P (P�1)(P�2)
n
H(H�1)(H�2)�(1��)2

+H(H�1)[2�a�(1��) + �a(1��)2]
+H[�a(�a�1)�+ 2�a�a(1��)] + �a�a(�a�1)g

R� (P ) =
3

P (P�1)(P�2)
n
H(H�1)(H�2)�2(1��)
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+H(H�1)[2�a�(1��) + �a�
2]

+H[�a(�a�1)(1��) + 2�a�a�] + �a(�a�1)�ag
R�(P ) =

6

P (P�1)(P�2)(P�3)
n
H(H�1)(H�2)(H�3)�2(1��)2

+2H(H�1)(H�2)[�a�(1��)2 + �a�
2(1��)]

+H(H�1)[�a(�a�1)(1��)2 + 4�a�a�(1��) + �a(�a�1)�2]
+2H[�a�a(�a�1)� + �a(�a�1)�(1��)]
+�a(�a�1)�a(�a�1)g


